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Summary

The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the 

guide RNA, and has been applied to programmable genome editing. Cas9-mediated cleavage 

requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus 

constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of 

Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a 

guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other 

Cas9 orthologs revealed striking conserved and divergent features among distantly related 

CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5′-NGG-3′ PAM, and used the 

structural information to create a variant that can recognize the more relaxed 5′-YG-3′ PAM. 

Furthermore, we demonstrated that pre-assembled FnCas9 ribonucleoprotein complexes can be 
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microinjected into mouse zygotes to edit endogenous sites with the 5′-YG-3′ PAMs, thus 

expanding the target space of the CRISPR-Cas9 toolbox.

Introduction

The RNA-guided DNA endonuclease Cas9 from the CRISPR (clustered regularly 

interspaced short palindromic repeat)-Cas (CRISPR associated) systems associates with the 

dual RNA guides (CRISPR RNA (crRNA) and trans-activating RNA (tracrRNA)), or a 

synthetic single-guide RNA (sgRNA), and cleaves double-stranded DNA targets 

complementary to the guide RNA (Garneau et al., 2010; Deltcheva et al., 2011; Jinek et al., 

2012; Gasiunas et al., 2012). Several Cas9 orthologs, such as Streptococcus pyogenes Cas9 

(SpCas9) (Cong et al., 2013; Mali et al., 2013) and Staphylococcus aureus Cas9 (SaCas9) 

(Ran et al., 2015), have been harnessed for genome editing in eukaryotic cells. Besides the 

RNA–DNA complementarity, DNA recognition and cleavage by Cas9 also require the 

presence of a PAM (protospacer adjacent motif) immediately downstream of the target DNA 

sequence (Deveau et al., 2008; Garneau et al., 2010), thereby constraining the range of the 

targetable sequences in Cas9-mediated genome editing. Cas9 orthologs from different 

microbes recognize diverse PAM sequences, and SpCas9 (Mojica et al., 2009) and SaCas9 

(Ran et al., 2015) recognize the 5′-NGG-3′ and 5′-NNGRRT-3′ PAMs, respectively.

The crystal structures of SpCas9 and SaCas9 have provided mechanistic insights into the 

RNA-guided DNA recognition and cleavage by Cas9 (Jinek et al., 2014; Nishimasu et al., 

2014; Anders et al., 2014; Nishimasu et al., 2015; Jiang et al., 2015; Jiang et al., 2016). 

SpCas9 and SaCas9 adopt a bilobed architecture comprising recognition (REC) and nuclease 

(NUC) lobes, in which the guide RNA–target DNA heteroduplex is bound within the central 

channel formed between the two lobes. The PAM-containing, double-stranded DNA (PAM 

duplex) is accommodated between the Wedge (WED) and PAM-interacting (PI) domains, 

where the PAM nucleotides are recognized by a specific combination of amino-acid residues 

in the PI domain (Anders et al., 2014; Nishimasu et al., 2015). Furthermore, a structural 

comparison between SpCas9 and SaCas9 illuminated both the conserved and divergent 

structural features among the orthologous CRISPR-Cas9 systems (Nishimasu et al., 2015).

The Cas9 orthologs have highly divergent lengths and sequences, ranging from ~900 to 

~1,600 amino acid residues, and the Cas9 from Francisella novicida (FnCas9) is one of the 

largest members (Chylinski et al., 2013; Hsu et al., 2014). FnCas9 consists of 1,629 amino 

acids and is significantly larger than other Cas9 orthologs, such as SpCas9 (1,368 amino 

acids) and SaCas9 (1,053 amino acids). Notably, a previous study reported that FnCas9 can 

mediate not only crRNA:tracrRNA-dependent DNA cleavage, but also scaRNA (small 

CRISPR/Cas-associated RNA):tracrRNA-dependent gene expression regulation (Sampson et 

al., 2013). However, the mechanisms by which FnCas9 executes its bifunctionality remain 

unknown. In addition, the potential use of FnCas9 in genome editing applications has not 

been explored.

In this study, we solved the high-resolution crystal structures of the 240 kDa FnCas9–

sgRNA–target DNA complex, thus providing insights into the RNA-guided DNA 

recognition mechanism. The present structures enabled a comparison of FnCas9 with 
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SpCas9 and SaCas9, which revealed unexpected structural divergence among the distantly 

related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5′-NGG-3′ PAM, and 

used the structural information to create an engineered FnCas9 variant that recognizes the 5′-

YG-3′ PAM. Furthermore, we demonstrated that pre-assembled FnCas9–sgRNA 

ribonucleoprotein (RNP) complexes can be injected into mouse zygotes to facilitate genome 

editing, thus expanding the target space in Cas9-mediated genome engineering.

Results

PAM specificity of FnCas9

Although a previous study indicated that FnCas9 recognizes the 5′-NG-3′ PAM (Fonfara et 

al., 2014), the FnCas9 PAM has not been fully characterized. To identify the FnCas9 PAM, 

we performed the PAM discovery assay, using a library of plasmid DNA targets with a 

degenerated 7-bp PAM sequence, as described previously (Ran et al., 2015; Zetsche et al., 

2015). The results showed that the FnCas9 recognizes the 5′-NGG-3′ PAM (Figure 1A). 

Consistently, our in vitro cleavage assay, using purified FnCas9, an sgRNA and a plasmid 

containing a 20-bp target site with 5′-TNN-3′ PAMs, revealed that FnCas9 efficiently 

cleaves a plasmid target with the 5′-TGG-3′ PAM, while it exhibits slight activities toward 

those with the 5′-TGA-3′ and 5′-TAG-3′ PAMs (Figure 1B). Taken together, we concluded 

that the FnCas9 PAM is 5′-NGG-3′, with a slight tolerance for A at positions 2 and 3.

Overall structure of the FnCas9–sgRNA–DNA complex

To clarify the RNA-guided DNA cleavage mechanism, we solved the crystal structures of 

full-length FnCas9 (residues 1–1,629; N995A) in complex with a 94-nt sgRNA, a 30-nt 

target DNA strand and a 9-nt non-target DNA strand (containing either the 5′-TGG-3′ PAM 

or the 5′-TGA-3′ PAM) at 1.7 Å resolutions (Figures 2A–2D, Figure S1, Table S1). To 

prevent the potential cleavage of the target DNA during crystallization, we replaced the 

conserved catalytic residue (Asn995) in the HNH domain with alanine. Since the two 

quaternary complex structures are virtually identical, the following discussions are based on 

the 5′-TGG-3′ PAM complex structure, unless otherwise stated.

The crystal structure revealed that FnCas9 comprises seven domains—the REC1–3, RuvC, 

HNH, WED and PI domains (Figures 2A–2D). The REC2 domain is inserted into the REC1 

domain, and the REC1 and REC3 domains are connected by a linker loop (referred to as the 

REC1–REC3 linker). The RuvC domain is composed of the three RuvC motifs (RuvC I–III). 

As in SpCas9 and SaCas9, RuvC-I and RuvC-III are connected to the REC1 and WED 

domains via the bridge helix and the phosphate lock loop, respectively. The HNH domain is 

connected to RuvC-II and RuvC-III via the α-helical linkers, L1 and L2, respectively. The 

WED and PI domains are connected by a linker loop (referred to as the WED–PI linker). 

The electron densities for the REC2 and HNH domains are relatively weak, indicating that 

the two domains are mobile.

Comparison of the overall structures of the Cas9 orthologs

A structural comparison of FnCas9 with SpCas9 (Nishimasu et al., 2014; Anders et al., 

2014) and SaCas9 (Nishimasu et al., 2015) revealed unanticipated structural differences 
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(Figures 2E and 2F and Figure S2). SpCas9 and SaCas9 adopt bilobed architectures 

comprising the REC and NUC lobes (Figures 2E and 2F and Figures S2B and S2C). In the 

NUC lobe, the RuvC domain interacts with the PI domain, to form a platform responsible 

for the binding of the 3′ tracrRNA tail. In contrast, in FnCas9, the RuvC domain does not 

interact with the PI domain (Figure 2C and Figure S2A). Instead, the RuvC domain interacts 

with the REC3 domain, while the PI domain interacts with the WED domain, which contacts 

the REC1 and REC2 domains. These inter-domain interactions are mediated by the FnCas9-

specific structural features (Figure S3). Accordingly, the 3′ tracrRNA tail of the FnCas9 

sgRNA is primarily recognized by the REC2 and REC3 domains (Figure S2). Although 

FnCas9 and SpCas9 commonly have the REC2 domain, the FnCas9 REC2 domain adopts a 

new fold, and is structurally unrelated to the SpCas9 REC2 domain.

In addition to these divergent structural features, there are conserved structural features 

among these Cas9 orthologs. The guide:target heteroduplex is accommodated in the central 

channel between the RuvC and REC3 domains, while the PAM duplex is bound between the 

WED and PI domains (Figures 2C–2F and Figure S2). Moreover, similar to SpCas9 and 

SaCas9, the RuvC and HNH domains of FnCas9 have the RNase H and ββα-metal folds, 

respectively. These structural findings confirmed that the RNA-guided DNA cleavage 

mechanisms are highly conserved among the CRISPR-Cas9 systems. In the FnCas9 

structure, the HNH domain is connected to the RuvC domain via the L1 and L2 linkers, and 

is distant from the target DNA strand, as in SpCas9 (Nishimasu et al., 2014; Anders et al., 

2014) and SaCas9 (Nishimasu et al., 2015) (Figures 2C–2F). These structural observations 

suggest that, upon the binding of the double-stranded DNA target, the HNH domain 

approaches and cleaves the target DNA strand via drastic conformational changes in the L1 

and L2 linkers, as observed in SpCas9 (Sternberg et al., 2015; Jiang et al., 2016).

Structures of the sgRNA and the target DNA

The sgRNA comprises the guide region, the repeat:antirepeat duplex, tetraloop, stem loop 1, 

the SL1–SL2 linker region, and stem loop 2 (Figures 3A and 3B). The guide region (G1–

G21) and the target DNA strand (dC1–dC21) form the guide:target heteroduplex, while the 

target DNA strand (dC(−9)–dA(−1)) and the non-target DNA strand (dT1*–dG9*) form the 

PAM duplex. The repeat:antirepeat duplex consists of ten Watson-Crick base pairs 

(U23:A51, U24:A50, C26:G48–G28:C44 and G31:C44–C35:G40), three non-canonical base 

pairs (G22:U52, U25:U49 and U30:U45), and the U29 bulge, which interacts with G28 and 

U47 (Figure 3A and Figure S4A). The repeat:antirepeat duplex and stem loop 1 are 

connected by C53, which is equivalent to A51 in the SpCas9 sgRNA and A55 in the SaCas9 

sgRNA (Figures 3C–3E). Stem loop 1 consists of two base pairs (A54:G62 and U55:A61) 

and five unpaired nucleotides (U56–A60) (Figure 3 and Figure S4B). The basal region of 

stem loop 1 is stabilized by a hydrogen-bonding network between G62 and C53/A54 and a 

stacking interaction between C53 and U63 (Figure S4B). Stem loops 1 and 2 are connected 

by a 9-nt linker, which contains a Watson-Crick base pair (A64:U68) and adopts a U-shaped 

structure (Figures 3A and 3C). Stem loop 2 consists of five Watson-Crick base pairs 

(C72:G94, G74:C92, A75:U91, G81:C87 and U82:A86), a wobble base pair (G73:U93), five 

unpaired nucleotides (U78, U83–G85 and C89), and two base triples (C76:G90•C79 and 

U80:A88•C77) (Figure 3A and Figure S4C).
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Comparison of the orthogonal sgRNA scaffolds

SpCas9 and SaCas9 have the structurally diverse REC1 and WED domains, which recognize 

distinct structural features (the repeat:antirepeat duplex and stem loop 1) of their cognate 

sgRNAs, thereby defining the orthogonality between cognate Cas9–sgRNA pairs 

(Nishimasu et al., 2014; Anders et al., 2014; Nishimasu et al., 2015). The present structure 

revealed that the repeat:antirepeat duplex and stem loop 1 of the FnCas9 sgRNA have 

structural features distinct from those of the SpCas9 and SaCas9 sgRNAs (Figures 3C–3E). 

Furthermore, there are notable structural differences in their 3′ tracrRNA tails. The stem 

loops in the SpCas9 and SaCas9 sgRNAs adopt an A-form helix, whereas stem loop 2 in the 

FnCas9 sgRNA contains the two base triples and adopts a distorted structure. In addition, 

stem loops 1 and 2 are connected by a single-stranded linker in the SpCas9 and SaCas9 

sgRNAs, whereas stem loops 1 and 2 are connected by the U-shaped linker in the FnCas9 

sgRNA (Figures 3C–3E). Consequently, stem loop 2 in the FnCas9 sgRNA is uniquely 

directed toward the REC1 and REC3 domains, unlike the SpCas9 and SaCas9 sgRNAs 

(Figures 3C–3D and Figure S2). These structural differences can explain the observed 

orthogonality between these CRISPR-Cas9 systems (Fonfara et al., 2014) (Figure 3F). A 

structural comparison also revealed the presence of a structurally conserved core region in 

their sgRNAs (Figure 3G). In the FnCas9 sgRNA, the core region consists of the basal stem 

regions in the repeat:antirepeat duplex (G22:U52, U23:A51 and U24:A50) and stem loop 1 

(C53, A54:G62 and U55:A61, U63) (Figures 3A and 3G). The sgRNA core regions are 

recognized by their cognate Cas9s in a similar manner (described later).

Recognition of the guide:target heteroduplex

A structural comparison of FnCas9 with SpCas9 (Nishimasu et al., 2014; Anders et al., 

2014) and SaCas9 (Nishimasu et al., 2015) revealed that their REC1 domains share a 4-helix 

bundle core, consisting of the bridge helix and three α-helices (α1–α3). In these CRISPR-

Cas9 systems, the PAM-proximal sugar-phosphate backbone of the heteroduplex is 

recognized by the 4-helix bundle core in a similar manner (Figures 4 and 5A–5C). Notably, 

the backbone phosphate in the PAM-proximal, 8-nt “seed” region in the sgRNA is 

extensively recognized by a conserved arginine cluster in the bridge helix (Figure S5A), 

consistent with the functional significance of the complementarity in the “seed” region in the 

heteroduplex (Jinek et al., 2012; Hsu et al., 2013; Ran et al., 2015). In SpCas9 and SaCas9, 

the PAM-distal region in the heteroduplex is recognized by the REC3 domain, which adopts 

a similar fold comprising 11 α-helices (Figures 5A and 5B). In contrast, the REC3 domain 

of FnCas9 adopts a new fold comprising 20 α-helices and a β-hairpin (Figure 5C), with a 

structural zinc ion coordinated by Cys460, Cys657, Cys814 and Cys817 (Figure 5D). 

Despite the lack of structural similarity, the REC3 domain of FnCas9 also recognizes the 

PAM-distal region in the heteroduplex, primarily in a sequence-independent manner, as in 

SpCas9 (Nishimasu et al., 2014; Anders et al., 2014) and SaCas9 (Nishimasu et al., 2015) 

(Figures 4 and 5D). Together, these structural observations explain the RNA-guided DNA 

targeting mechanism of FnCas9.

In SpCas9 (Anders et al., 2014) and SaCas9 (Nishimasu et al., 2015), the backbone 

phosphate group between nucleotides at the +1 and −1 positions in the target DNA strand 

(referred to as the +1 phosphate) interacts with the phosphate lock loop between the RuvC 
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and WED domains, thereby facilitating the unwinding of double-stranded DNA targets. In 

FnCas9, Asp1242 and Gly1243 in the phosphate lock loop interact with the +1 phosphate in 

the target DNA strand (Figure S5B), indicating that the DNA unwinding mechanism is 

conserved among the CRISPR-Cas9 systems.

Recognition of the sgRNA scaffold

The REC1 and WED domains of FnCas9 are structurally distinct from those of SpCas9 

(Nishimasu et al., 2014; Anders et al., 2014) and SaCas9 (Nishimasu et al., 2015), and their 

REC1 and WED domains recognize the repeat:antirepeat duplex in species-specific manners 

(Figures 5A–5C and Figures S6A–S6C). Notably, the WED domain of FnCas9 (225 

residues) is larger than those of SpCas9 (27 residues) and SaCas9 (121 residues), and adopts 

a new fold consisting of 3- and 4-stranded anti-parallel β-sheets, a β-hairpin and seven α-

helices (Figure 5C). The FnCas9 WED domain interacts with the REC1 and REC2 domains 

to form a tunnel, which encloses the repeat:antirepeat duplex (Figure S6C). In the tunnel, 

U29, U24/A51 and G43 in the repeat:antirepeat duplex are recognized by Gln93/Gly331, 

Gln1466 and Glu1401 in base-specific manners, respectively (Figure S6D). The 3′ tracrRNA 

tail is also recognized by FnCas9 in a manner distinct from those of SpCas9 and SaCas9 

(Figure S2). The SL1–SL2 linker interacts with the REC3/RuvC domains and the phosphate 

lock loop, while stem loop 2 interacts with the REC1/REC3 domains and the REC1–REC3 

linker. In particular, the flipped-out C89 and the two base triples in stem loop 2 form 

hydrogen bonds with Asn454 and Asn454/Gln522/Lys660, respectively (Figure S6E). In 

addition, the β-hairpin in the REC3 domain interacts with the sugar-phosphate backbone in 

the U-shaped linker and stem loop 2 (Figure S6F).

The sgRNA core region is recognized by the bridge helix, the REC1 domain and the 

phosphate lock loop (Figure 5E). The backbone phosphate groups of A50–U52 in the 

repeat:antirepeat duplex interact with Gln69/Lys72 (bridge helix) and Ser96/Asn100 

(REC1), while the 2′-OH of U23 hydrogen bonds with the main-chain carbonyl group of 

Ile1244 (phosphate lock loop). The backbone phosphate groups of A61–A64 in stem loop 1 

interact with Arg55/Arg62/Arg63 (bridge helix) and Arg1237 (phosphate lock loop). The 

C53-U63 stacking pair is sandwiched between the side chains of Arg58 and Met1239, while 

C53 forms base-specific contacts with Arg1237, Met1239 and Thr1240 (Figure 5E). 

Notably, SpCas9 and SaCas9 recognize the core regions of their cognate sgRNAs in similar 

manners (Figure S7), consistent with the notion that the core regions of the 

crRNA:tracrRNA guides are highly conserved among the CRISPR-Cas9 systems, and are 

important for Cas9-mediated DNA cleavage (Briner et al., 2014). Intriguingly, the adenine 

nucleotides between the repeat:antirepeat duplex and stem loop 1 (A51 in the SpCas9 

sgRNA and A55 in the SaCas9 sgRNA), which are equivalent to C53 in the FnCas9 sgRNA, 

adopt the syn conformation, and form analogous interactions with the proteins (Figure S7).

Recognition of the 5′-NGG-3′ PAM

In the present structure, the PAM duplex is sandwiched between the WED and PI domains, 

and the PAM sequences are read by the PI domain (Figures 6A and 6B). dT1* does not 

contact the protein (Figure 6C). The O6 and N7 of dG2* form bidentate hydrogen bonds 

with Arg1585 in the PI domain, while the N3 of dG2* forms a hydrogen bond with Ser1473 
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in the WED–PI linker (Figure 6C). In the 5′-TGG-3′ PAM complex, the O6 and N7 of dG3* 

form bidentate hydrogen bonds with Arg1556 (Figure 6C), whereas in the 5′-TGA-3′ PAM 

complex, the N7 of dA3* forms only a single hydrogen bond with Arg1556 (Figure 6D), 

consistent with the higher activity of FnCas9 with the 5′-NGG-3′ PAM than the 5′-NGA-3′ 

PAM. In addition, dA(−1) in the target DNA strand forms a stacking interaction with 

Arg1474 in the WED–PI linker (Figure 6C). The mutations of these residues reduced the in 
vitro DNA cleavage activity of FnCas9 (Figure 6E), confirming the functional significance 

of Ser1473, Arg1474, Arg1556 and Arg1585. In addition to these direct interactions, 

dC(−2), dG2* and dG3* form water-mediated hydrogen bonds with Glu1449, Asp1470 and 

Lys1451 in the WED domain, respectively. Together, these structural findings explain the 

mechanism of the 5′-NGG-3′ PAM recognition by FnCas9.

The PI domains of SpCas9 (Nishimasu et al., 2014; Anders et al., 2014) and SaCas9 

(Nishimasu et al., 2015) share a similar core fold comprising two distorted, anti-parallel β-

sheets (β1–β3 and β4–β9), with the β5–β7 region responsible for the PAM recognition 

(Figures 6F and 6G). In SpCas9, the 5′-NGG-3′ PAM is recognized by Arg1333/Arg1335 in 

the β7 loop (Anders et al., 2014), whereas in SaCas9, the 5′-NNGRRT-3′ PAM is recognized 

by Asn985/Asn986/Arg991/Arg1015 in the β5–β7 region (Nishimasu et al., 2015). The 

FnCas9 structures revealed that, despite the lack of sequence homology, the PI domain of 

FnCas9 adopts a similar core fold to those of SpCas9 and SaCas9 (Figure 6H). Whereas, in 

SpCas9 and SaCas9, the β8 and β9 strands in the PI domain are responsible for the 

interaction with the RuvC domain, the FnCas9 PI domain lacks the equivalent strands, 

consistent with the structural observation that the RuvC and PI domains do not interact in 

FnCas9. In FnCas9, the 5′-NGG-3′ PAM is recognized by Arg1556 in the β5–β6 loop and 

Arg1585 in the β6–β7 loop. Although both SpCas9 and FnCas9 recognize the 5′-NGG-3′ 

PAM with a pair of arginine residues (Arg1333/Arg1335 in SpCas9 and Arg1585/Arg1556 

in FnCas9), these arginine pairs are located at different positions, due to the substantial 

difference in their relative arrangement between the PI domain and the PAM duplex (Figures 

6G and 6H). In SpCas9, the 3rd G in the 5′-NGG-3′ PAM is recognized by the Arg1335 side 

chain, which is anchored by a salt bridge with Glu1219, consistent with the specific 

recognition of the 3rd G by SpCas9 (Figure 6G). In contrast, in FnCas9, the Arg1556 side 

chain does not form such a contact with the proximal residues (Figure 6H), explaining why, 

unlike SpCas9, FnCas9 can also recognize the 3rd A in the PAM, albeit with low efficiency. 

Together, these structural findings reinforced the notion that the Cas9 orthologs recognize 

diverse PAM sequences using distinct sets of PAM-interacting residues in the PI domains.

Structure-guided engineering of the FnCas9 PAM specificity

To expand the target space in genome engineering, we sought to rationally design the 

FnCas9 variant that can recognize the 5′-NG-3′ PAM. To eliminate the interaction between 

Arg1556 and the 3rd G in the 5′-NGG-3′ PAM, we first prepared the R1556A variant, in 

which Arg1556 is substituted with an alanine. In vitro cleavage experiments confirmed the 

decreased activities of the R1556A variant for the 5′-TGA-3′ and 5′-TGG-3′ PAMs (Figure 

7A). We hypothesized that the reduced activity of the R1556A variant could be recovered by 

additional base-non-specific interactions between the protein and the PAM duplex. We thus 

introduced several mutations into the R1556A variant, which would potentially form new 
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interactions with the backbone phosphates of the PAM duplex. We then examined their 

effects on the in vitro cleavage activity for the 5′-TGN-3′ PAMs, and found that the E1369R/

E1449H/R1556A triple mutant (referred to as the RHA FnCas9 variant) cleaves the target 

sites with the 5′-TGN-3′ PAMs with efficiencies comparable to that of the wild-type FnCas9 

for the target sites with the 5′-TGA-3′ PAM (Figure 7A). However, unexpectedly, the PAM 

discovery analyses indicated that RHA FnCas9 recognizes 5′-YG-3′, but not 5′-NG-3′, as the 

PAM (Figure 7B). Consistently, in vitro cleavage assays revealed that RHA FnCas9 has a 

stronger preference for the 1st Y, as compared with wild-type FnCas9 (Figure 7C). Together, 

these results demonstrated that FnCas9 can be engineered to recognize the 5′-YG-3′ PAM by 

the E1369R/E1449H/R1556A substitutions.

To elucidate the 5′-YG-3′ PAM recognition mechanism, we solved the crystal structure of 

RHA FnCas9 in complex with the sgRNA and the DNA target with the 5′-TGG-3′ PAM, at 

1.7 Å resolution (Figures 7D and 7E, Table S1). As in the original 5′-TGG-3′ PAM complex, 

dG2* is recognized by Ser1473 and Arg1585, while dA(−1) forms a stacking interaction 

with Arg1474 (Figure 7D). As the purine bases are larger than the pyrimidine bases, the 

purine nucleotides at the −1 position in the target DNA strand would form a favorable 

stacking interaction with Arg1474, thereby explaining the preference of RHA FnCas9 for 

the 1st Y in the 5′-YG-3′ PAM. In contrast to the original structure, dG3* is not recognized 

by the protein, due to the R1556A substitution (Figure 7D). Notably, the newly incorporated 

Arg1369 and His1449 interact with the backbone phosphate group between dC(−2) and 

dA(−1) in the target DNA strand (Figure 7D), confirming that these base-non-specific 

interactions contribute to compensate for the loss of the base-specific interactions between 

Arg1556 and the 3rd G in the 5′-NGG-3′ PAM. Unlike wild-type FnCas9, RHA FnCas9 

requires the 1st Y in the 5′-YG-3′ PAM. The difference in their 1st PAM nucleotides 

suggested that the interactions between Arg1369/His1449 and the PAM duplex in RHA 

FnCas9 are not sufficient to fully compensate for the loss of the interactions between 

Arg1556 and the 3rd PAM nucleotides. The requirement of the 1st Y by the RHA FnCas9 

may be eliminated by additional substitutions that enhance the PAM duplex binding, thereby 

achieving the recognition of the 5′-NG-3′ PAM. Together, our structural data explain the 5′-

YG-3′ PAM recognition mechanism of the RHA FnCas9 variant.

FnCas9-mediated genome editing in mouse zygotes

Finally, we examined whether FnCas9 can be harnessed for genome editing in mammalian 

cells. FnCas9 failed to induce indels efficiently, when expressed in human embryonic kidney 

293FT cells (data not shown), as in the cases of many Cas9 orthologs, except for a few such 

as SpCas9 (Cong et al., 2013; Mali et al., 2013) and SaCas9 (Ran et al., 2015). We reasoned 

that one possibility is the inefficient assembly of the vector-expressed FnCas9 and the 

sgRNA in human cells. We thus mixed the purified FnCas9 protein, the 60-nt crRNA and the 

114-nt tracrRNA, to assemble an FnCas9–crRNA:tracrRNA RNP complex targeted to the 

mouse Tet1EX4 locus with the 5′-TGN-3′ PAMs. We microinjected the pre-assembled 

FnCas9 RNP complex into mouse zygotes, and monitored FnCas9-mediated indel formation 

four days after microinjection. The FnCas9 RNP complex was able to induce indels at the 

Tet1EX4 target sites with 5′-TGA-3′ and 5′-TGG-3′ PAMs, but not at those with 5′-TGT-3′ 

and 5′-TGC-3′ PAMs (Figure 7E), while FnCas9 showed in vitro preference for the 5′-
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NGG-3′ PAM over the 5′-NGA-3′ PAM. Notably, unlike wild-type FnCas9, RHA FnCas9 

was able to induce indels at the Tet1EX4 sites with the 5′-TGN-3′ PAMs (Figure 7E). In 

contrast, RHA FnCas9 failed to edit the Tet1EX4 sites with the 5′-GGN-3′ PAMs (data not 

shown), consistent with the requirement of the 1st Y in the PAM by RHA FnCas9. Together, 

these results demonstrated that the wild-type and RHA FnCas9 RNP complexes can be 

microinjected into mouse zygotes, to facilitate genome editing in target sites with the 5′-

NGG-3′ and 5′-YG-3′ PAMs, respectively.

Discussion

In this study, we present the high-resolution structures of the FnCas9–sgRNA–DNA 

complex. A structural comparison of FnCas9 with SpCas9 (Nishimasu et al., 2014; Anders 

et al., 2014) and SaCas9 (Nishimasu et al., 2015) enhanced our understanding of the 

divergence in orthologous CRISPR-Cas9 systems. The present structure revealed that the 

WED domain of FnCas9 adopts a new fold and is structurally distinct from those of SpCas9 

and SaCas9, thereby reinforcing the notion that the WED domains are highly divergent and 

critical for defining the orthogonality among the CRISPR-Cas9 systems. Although it shares 

a similar core fold with those of SpCas9 and SaCas9, the PI domain of FnCas9 recognizes 

the 5′-NGG-3′ PAM in a unique manner, revealing the new repertoire of diverse PAM 

recognition mechanisms. Furthermore, the present structure revealed unexpected structural 

divergence in the CRISPR-Cas9 systems. First, unlike SpCas9 and SaCas9, FnCas9 does not 

adopt a bilobed architecture. Second, the REC domain of FnCas9 has distinct structural 

features, as compared with those of SpCas9 and SaCas9. Third, there are notable structural 

differences in their sgRNA scaffolds. Stem loop 2 of the FnCas9 sgRNA contains the base 

triples and is recognized by the REC domain, whereas those of the SpCas9 and SaCas9 

sgRNAs adopt canonical A-form structures and are recognized by the RuvC and PI domains. 

These striking structural differences may be related to the FnCas9-specific 

scaRNA:tracrRNA-mediated RNA targeting (Sampson et al., 2013). The 5′ and 3′ regions of 

the tracrRNA are complementary to the scaRNA and the target RNA, respectively (Sampson 

et al., 2013). In the present structure, the 5′ region of tracrRNA base pairs with crRNA to 

form the repeat:antirepeat duplex, suggesting that tracrRNA and scaRNA form a similar 

duplex structure, which is recognized by the REC and WED domains. In contrast, the 3′ 

region of tracrRNA forms the stem loops, and is not available for base pairing with the target 

RNA. It is thus possible that the 3′ region of tracrRNA and the target RNA may form a 

distinct, scaRNA-dependent duplex structure, which is recognized by the REC lobe. Further 

studies will be required to elucidate the underlying mechanism of the scaRNA:tracrRNA-

mediated RNA targeting. Moreover, the present structure illuminated the highly conserved 

features across the CRISPR-Cas9 systems. Similar to SpCas9 and SaCas9, FnCas9 has the 

bridge helix and the phosphate lock loop, indicating that the RNA-guided DNA cleavage 

mechanism is conserved among the CRISPR-Cas9 systems.

We showed that FnCas9 recognizes the 5′-NGG-3′ PAM, and rationally designed the RHA 

variant that recognizes the 5′-YG-3′ PAM. Furthermore, we demonstrated that in mouse 

zygotes, pre-assembled RNP complexes of wild-type and RHA FnCas9 can edit endogenous 

genomic loci with the 5′-NGG-3′ and 5′-YG-3′ PAMs, respectively, although FnCas9 failed 

to facilitate genome editing when expressed in human cells. Since the other Cas9 orthologs 
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characterized so far do not have PAM specificities for either 5′-NGR-3′ or 5′-YG-3′, both the 

wild-type and RHA FnCas9s will contribute to expanding the target space in Cas9-mediated 

genome editing. Previous studies showed that the delivery of pre-assembled Cas9–sgRNA 

RNP complexes enables genome editing with improved efficiency and specificity in human 

cells (Lin et al., 2014; Kim et al., 2014; Zuris et al., 2015), mouse and zebrafish embryos 

(Sung et al., 2014) and plants (Woo et al., 2015), as compared to the transfection of plasmids 

encoding Cas9 and sgRNA. Our results suggested that, in addition to these advantages, the 

delivery of pre-assembled Cas9–sgRNA RNP complexes might provide a general means to 

rescue the in vivo cleavage activities of some Cas9 orthologs that fail to function in 

mammalian cells.

The RHA FnCas9 structure demonstrated that the loss of base-specific interactions with the 

PAM can be partly compensated by newly incorporated, base-non-specific interactions, 

thereby achieving altered PAM specificities. Recent studies showed that SpCas9 (Kleinstiver 

et al., 2015a) and SaCas9 (Kleinstiver et al., 2015b) can be engineered by molecular 

evolution strategies to exhibit altered PAM specificities. The VQR and VRER SpCas9 

variants recognize the 5′-NGA-3′ and 5′-NGCG-3′ PAMs, respectively, whereas the KKH 

SaCas9 variant recognizes the 5′-NNNRRT-3′ PAM. Intriguingly, the G1218R substitution 

in VRER SpCas9 and the E782K/N968K substitutions in KKH SaCas9 are located close to 

the phosphate backbone in the PAM duplex, suggesting that these newly incorporated, 

positively charged residues interact with the phosphate backbone in the PAM duplex, as in 

the case of the E1369R/E1449H substitutions in RHA FnCas9. Thus, our strategy to 

compensate for the loss of base-specific interactions with the PAM nucleotides, by including 

additional base-non-specific interactions to alter Cas9 PAM specificities, may be generally 

applicable to other Cas9 orthologs, such as the widely used SpCas9 and SaCas9.

Experimental Procedures

Sample Preparation

The gene encoding full-length FnCas9 (residues 1–1,629) was cloned between the NdeI and 

XhoI sites of the modified pE-SUMO vector (LifeSensors), and the N995A mutation was 

introduced by a PCR-based method. The FnCas9 N995A mutant protein was expressed at 

37°C in Escherichia coli Rosetta 2 (DE3) (Novagen), and was purified by chromatography 

on Ni-NTA Superflow resin (QIAGEN). The eluted protein was incubated overnight at 4°C 

with TEV protease to remove the His6-SUMO-tag, and was further purified by 

chromatography on Ni-NTA, Mono S (GE Healthcare) and HiLoad Superdex 200 16/600 

(GE Healthcare) columns. The SeMet-labeled FnCas9 N995A mutant and the RHA FnCas9 

N995A mutant were expressed in E. coli B834 (DE3) (Novagen) and E. coli Rosetta2 (DE3) 

respectively, and were purified using a similar protocol to that for the native protein. The 94-

nt sgRNA was transcribed in vitro with T7 RNA polymerase, using a PCR-amplified DNA 

template, and was purified by 10% denaturing polyacrylamide gel electrophoresis. To 

facilitate crystallization, the internal loop in the repeat:antirepeat duplex was replaced by 

G:C base pairs (Figure S1A). The 30-nt target DNA strand and the 9-nt non-target DNA 

strand were purchased from Sigma-Aldrich. The purified FnCas9 protein was mixed with the 

sgRNA, the target DNA strand and the non-target DNA strand (containing either the 5′-
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TGG-3′ PAM or the 5′-TGA-3′ PAM) (molar ratio, 1:1.5:2.3:4), and then the reconstituted 

FnCas9–sgRNA–DNA complex was purified by gel filtration chromatography on a 

Superdex 200 Increase column (GE Healthcare), in buffer consisting of 10 mM Tris-HCl, 

pH 8.0, 150 mM NaCl and 1 mM DTT. For in vitro cleavage assays, the His6-tagged FnCas9 

proteins were expressed at 37°C in E. coli Rosetta 2 (DE3), and were purified by 

chromatography on Ni-NTA and HiTrap SP HP (GE Healthcare) columns. The purified 

SpCas9 and SaCas9 proteins and their cognate sgRNAs were prepared as described 

previously (Nishimasu et al., 2014; Nishimasu et al., 2015). For microinjection experiments, 

wild-type and RHA FnCas9 were prepared using a similar protocol to that for the N995A 

mutant used for crystallization.

Crystallography

The purified FnCas9–sgRNA–DNA complex (with the 5′-TGG-3′ PAM or 5′-TGA-3′ PAM) 

was crystallized at 20°C. The initial crystals were obtained by mixing 0.1 μl of complex 

solution (A260 nm = 15) and 0.1 μl of reservoir solution (9–11% PEG 3,350, 0.2 M calcium 

acetate and 0.1 M sodium citrate, pH 5.0), using the sitting drop vapor diffusion method. 

The crystals were improved by the microseeding method, using Seed Bead (Hampton 

Research). The initial crystal was harvested in stabilization solution (9–11% PEG 3,350, 0.2 

M calcium acetate and 0.1 M sodium acetate, pH 5.0), and then crushed using the Seed Bead 

to prepare the seed stock solution. The crystallization drops were formed by mixing 1 μl of 

complex solution (A260 nm = 15) and 1 μl of the seed stock solution, and then were incubated 

against 0.5 ml of reservoir solution (9–11% PEG 3,350, 0.2 M calcium acetate and 0.1 M 

sodium acetate, pH 5.0), using the hanging drop vapor diffusion method. The SeMet-labeled 

FnCas9 complex (the 5′-TGG-3′ PAM) and the RHA FnCas9 complex (the 5′-TGG-3′ PAM) 

were crystallized under similar conditions, using the seed stock solution containing the wild-

type crystals. X-ray diffraction data were collected at 100 K on beamlines BL41XU at 

SPring-8 (Hyogo, Japan) and PXI at the Swiss Light Source (Villigen, Switzerland). The 

crystals were cryoprotected in reservoir solution supplemented with 25% ethylene glycol. 

The X-ray diffraction data were processed using XDS (Kabsch, 2010) and AIMLESS (Evans 

and Murshudov, 2013). The structure was determined by the Se-SAD method, using 

PHENIX AutoSol (Adams et al., 2010). The structural model was automatically built using 

Buccaneer (Cowtan, 2006), followed by manual model building using COOT (Emsley and 

Cowtan, 2004) and structural refinement using PHENIX (Adams et al., 2010). The final 

models of the wild-type (the 5′-TGG-3′ PAM or the 5′-TGA-3′ PAM) and RHA (the 5′-

TGG-3′ PAM) FnCas9 complexes were refined, using their native data sets.

In vitro Cleavage Assay

In vitro plasmid DNA cleavage experiments were performed, essentially as described 

previously (Nishimasu et al., 2015). The BamHI-linearized pUC119 plasmid (100 ng, 10 

nM), containing the 20-nt target sequence and the PAM sequence, was incubated at 37°C for 

30 min with the FnCas9-sgRNA complex (30 nM), in 10 μl of reaction buffer, containing 20 

mM Tris-HCl, pH 8.5, 100 mM KCl, 10 mM MgCl2 and 1 mM DTT. Reaction products 

were resolved on an ethidium bromide-stained 1% agarose gel, and then visualized using an 

Amersham Imager 600 (GE Healthcare). To test the orthogonality between Cas9 and 

sgRNA, each Cas9 ortholog (250 nM) and sgRNA (250 nM) were incubated at 37°C for 30 

Hirano et al. Page 11

Cell. Author manuscript; available in PMC 2016 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



min with the plasmid DNA, in a reaction buffer containing 20 mM Tris-HCl, pH 8.0, 100 

mM NaCl and 10 mM MgCl2.

In vitro PAM Screen

Randomized PAM plasmid libraries were constructed using synthesized oligonucleotides 

(IDT) consisting of 7 randomized nucleotides 3′ of a 20-nt target sequence, as previously 

described (Zetsche et al., 2015). In vitro cleavage reactions using wild-type FnCas9 or RHA 

FnCas9 with sgRNAs targeting the PAM library were fractionated on 2% agarose E-gels 

(Life Technologies). Bands corresponding to the un-cleaved target were extracted from the 

gel, using a Zymoclean Gel DNA Recovery Kit (Zymo Research), and the target PAM 

region was amplified and sequenced using a MiSeq (Illumina) with single-end 150 cycles. 

From the sequence data, the PAM regions were extracted, counted, and normalized to total 

reads for each sample. For a given PAM, enrichment was measured as the log ratio as 

compared to no protein control, with a 0.01 pseudocount adjustment. PAMs above a 3.5 

enrichment threshold were collected and used to generate sequence logos (Crooks et al., 

2004).

Microinjection and Typing the Blastocyst Embryos

All animal procedures were approved by the Animal Care and Experimentation Committee 

at Gunma University, and performed in accordance with approved guidelines. Female 

B6D2F1 mice (8–10 weeks old, CLEA Japan) were superovulated by the injection of 7.5 

units of pregnant mare’s serum gonadotropin (PMSG; ASKA Pharmaceutical), followed by 

7.5 units of human chorionic gonadotrophin (hCG; ASKA Pharmaceutical) 48 h later, and 

mated overnight with B6D2F1 male mice. Zygotes were collected from oviducts 21 h after 

the hCG injection, and pronuclei-formed zygotes were placed into the M2 medium. 

Microinjection was performed using a microscope equipped with a microinjector 

(Narishige). The FnCas9 RNP complex was assembled by mixing the purified FnCas9 

protein (0.2 μM), the 115-nt tracrRNA (0.9 μM) and the 60-nt crRNA (1.1 μM) targeting the 

mouse Tet1EX4 locus (Table S2), and then the FnCas9 RNP complex (1 pl) was injected 

into the pronuclei of the zygotes. The crRNA and the tracrRNA were prepared by in vitro T7 

transcription. After injection, all zygotes were cultured in M16 medium for 4 days. To detect 

indels, the targeted Tet1EX4 region was amplified by PCR, using genomic DNA extracted 

from each blastocyst and the following primers: 5′-AGAACAAAGCCCCTGTGCTA-3′ 

(forward) and 5′-ACCACTCCAAGCCCTTTTCT-3′ (reverse). The PCR products were 

digested with a specific restriction enzyme that cleaves the Cas9 target site of the 

unmodified genomes, and then were analyzed by agarose gel electrophoresis. For the 

Tet1EX4 target site with 5′-TGC-3′, indels were detected by a heteroduplex mobility assay 

(HMA). Briefly, the PCR products were reannealed and fractionated by polyacrylamide gel 

electrophoresis to detect the heteroduplex.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PAM specificity of FnCas9
(A) PAM discovery assay for FnCas9.

(B) In vitro DNA cleavage by FnCas9. The linearized plasmid targets with the 5′-TNN-3′ 

PAM were incubated with the purified FnCas9–sgRNA complex.
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Figure 2. Overall structure of the FnCas9–sgRNA–DNA complex
(A) Domain organization of FnCas9. BH, bridge helix; PLL, phosphate lock loop.

(B) Schematic representation of the sgRNA–DNA.

(C and D) Ribbon (C) and surface (D) representations of the FnCas9–sgRNA–DNA 

complex.

(E and F) Crystal structures of SpCas9 (PDB: 4UN3) (E) and SaCas9 (PDB: 5CZZ) (F).
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Figure 3. Structure of sgRNA–DNA
(A) Schematic representation of the FnCas9 sgRNA scaffold. The sgRNA core fold is 

highlighted in pink.

(B) Structure of the FnCas9 sgRNA–DNA.

(C–E) sgRNA scaffolds for FnCas9 (C), SpCas9 (D) and SaCas9 (E). The guide regions are 

omitted for clarity.

(F) Comparison of the sgRNA scaffolds of FnCas9 (red), SpCas9 (blue) and SaCas9 (gray).
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Figure 4. Schematic of the nucleic acid recognition by FnCas9
Residues that interact with nucleic acids via their main chain are shown in parentheses. 

Water-mediated hydrogen bonds are not shown for clarity.
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Figure 5. Recognition of the sgRNA and the target DNA by the Cas9 orthologs
(A–C) Recognition of the nucleic acids by the REC/WED domains of SpCas9 (A), SaCas9 

(B) and FnCas9 (C).

(D) Recognition of the RNA–DNA heteroduplex by FnCas9. Hydrogen-bonding and 

electrostatic interactions are indicated by gray dashed lines.

(E) Recognition of the sgRNA core fold by FnCas9.
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Figure 6. PAM recognition
(A) Binding of the PAM duplex to the groove between the WED and PI domains.

(B) Schematics of the PAM duplex recognition. Water-mediated hydrogen bonds between 

the protein and the sugar-phosphate backbone are omitted for clarity.

(C and D) Recognition of the 5′-TGG-3′ (C) and 5′-TGA-3′ (D) PAMs. Water molecules are 

shown as red spheres.

(E) In vitro mutational analysis of the PAM-interacting residues. The linearized plasmid 

targets with the 5′-TGN-3′ PAMs were incubated with the wild type and mutants of FnCas9.

(F) Comparison of the PI domains of SpCas9 (F), SaCas9 (G) and FnCas9 (H)
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Figure 7. Structure-guided engineering and genome editing in mouse zygotes
(A) In vitro cleavage activity of wild-type and RHA FnCas9. The linearized plasmid targets 

with the 5′-TGN-3′ PAMs were incubated with the purified FnCas9–sgRNA complex.

(B) PAM discovery assay for RHA FnCas9.

(C) Preference of wild-type and RHA FnCas9 for the 1st PAM nucleotides. The linearized 

plasmid targets with the 5′-NGG-3′ PAMs were incubated with the FnCas9–sgRNA 

complex.

(D) PAM recognition mechanism of wild-type (left) and RHA (right) FnCas9.

(E) FnCas9-mediated genome editing in mouse zygotes. The pre-assembled wild-type and 

RHA FnCas9 RNP complexes were microinjected into mouse zygotes. The ratios between 

the numbers of embryos with FnCas9-mediated indels and the total numbers of injected 

embryos are shown above the bars. The numbers of embryos with mutations in both alleles 

(left) and a single allele (right) are shown in parentheses.
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